

2003 AFCEE Technology Transfer Workshop

Promoting Readiness through Environmental Stewardship

Bioaugmentation: From the Start to the State-of-the-Art

Bruce Alleman
Battelle
26 Feb 2003

Talk Outline

- Definition
- Factors that Affect Bioaugmentation
- When and Where to Bioaugment
- Some History of the Development of Bioaugmentation
- Some Early Examples
- The Path to Today
- A Few Case Histories
- The Current State of the Art
- Remaining Issues
- Costs

Definition of Bioaugmentation

Bioaugmentation is the addition of a prepared culture of microorganisms with desired degradative properties to a contaminated medium to exploit the degradative qualities to enhance contaminant biotransformation

Factors that Affect Bioaugmentation

- Hydrogeologic conditions such as effective porosity, aquifer heterogeneity, and groundwater flow velocities affect the ability to inject and distribute microorganisms, and the ability to contact bugs, substrate, and contaminant
- Geochemical parameters including pH, salinity, redox (competitive electron acceptors), temperature and contaminant concentration (toxicity concerns) and bioavailability affect the activity and survival of the injected cultures
- Geomicrobiology including competition for electron donor and predation affects the survival of the injected culture
- Substrate Interactions such as with co-contaminants can inhibit degradations rates in complex mixtures

When/Where to Bioaugment

Bioaugmentation is appropriate at sites where:

- Natural attenuation processes are not evident and/or not protective of sensitive receptors
 - Lack of contaminant degraders
 - Lack of nutrients (i.e., primary substrates, suitable electron donors, other nutrients)
 - Poor environmental conditions (i.e., redox, pH)
 - Slow kinetics

Screened by thorough site characterization and monitoring

- Enhanced bioremediation does not work
 - Lack of microorganisms

Screened through laboratory and field testing (RABITT)

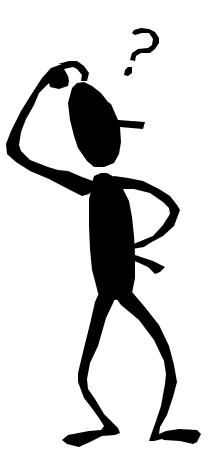
 Hydrogeologic and geochemical parameters allow for the introduction/distribution of the organisms, delivery or nutrient solutions, and expression/retention of degradative activity

A Little History: In the Beginning

Bioaugmentation products were based more on profits motivations than on sound science

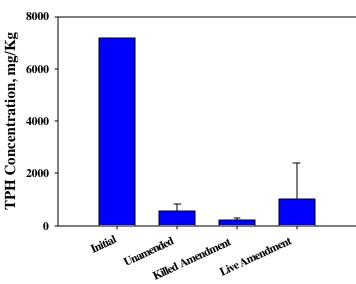
- Known that microorganisms degraded contaminants
- Not understood that specific microorganisms were responsible for that degradation
- Not understood which environmental variables affected activity and survival
- Not clear what benefit bioaugmentation provided

Aggressive sales tactics of "snake oil" salesman led resulted in black eye for bioaugmentation


- Unsubstantiated claims
- Failed applications

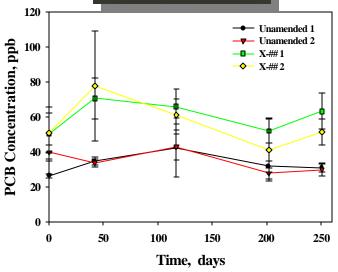
Some Early Quotes From Vendors

- When asked for application directions
 "Just mix in about 25% and wait. If it doesn't work, just add some more"
- When asked about the degradation pathway
 "The contaminant causes a mutation that enables the bacteria to degrade the contaminant"
- When asked about culture survivability
 "The bacteria don't grow, they're born dead"
- When asked about oxygen requirements
 "Bacteria like microbubbles, large bubbles are like you trying to swallow a basketball"



Examples of Early Products

- Product 1: XXX-2000
- Marketed for Petroleum Hydrocarbons
- Claim: faster treatment to lower concentrations
- 3 Part Product
 - Surfactant, nutrient, freeze-dried culture (powder)
- Laboratory tested over 60 days
- Results showed no marked improvement over no amendment



Examples of Early Products

- Product 2: X-XX
- Marketed for hydrocarbons, PAHs, pesticides, <u>PCBs</u>, and metals
- Claims: 500 ppm to ND in 150 days
- 2 Part Product
 - Peat based culture
 - Chemical inducer
- Field tested for 250 days
- Results showed no treatment with or without amendment

The Path Forward

- Involvement of Qualified Scientists and Engineers
 - Microbiologists, geologists, hydrologists, environmental engineers
 - Questions asked, answers sought
- Laboratory Studies
 - Isolation and identification of microorganisms
 - Better understanding of the underlying principles of biodegradation
 - Aerobic, anaerobic, cometabolic pathways
 - Better understanding of the Degradation Environment
 - Redox conditions, pH effects
 - Nutrient requirements
 - Competition and survival
- Field Trials and Demonstrations
 - Microbial Transport
 - Culture Survivability
 - Expression of degradation activity

Case Histories

3 Case Histories

- #1 is and aerobic approach that utilized addition of methane oxidizing bacterium
 - Cometabolize TCE via methane monooxygenase
- #2 involved aerobic degradation of TCE toluene degrading bacterium
 - Cometabolism by a constitutive toluene *ortho*-monooxygenase producing bacterium
- #3 employed a mixed culture of anaerobic halorespiring microorganisms
 - Mixed cultures of phylogenetically related Dehalococcoides

Case History #1: Chico Municipal Airport LLNR

Culture

- Methylosinus trichosporium OB3b (pure culture in resting state)
- Laboratory grown and concentrated, suspended in TCE-free groundwater

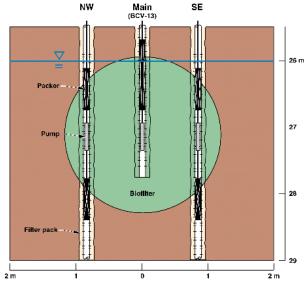
TCE plume

(2000 m x 500 m; 1.0 to 1.5 ppm max)

Aquifer characteristics

■ Depth 26 m, porosity .40, permeability 3µm², velocity 30 cm/d

Test Setup

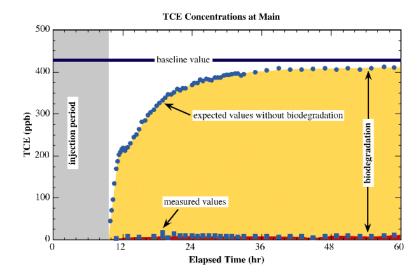

- 1 injection well (IW), 2 monitoring wells (MWs)
- 1,800 L, 5.4 x 109 cell/mL, 1 well, 3.8 L/min
- No substrate added

Water Extraction

3.8 L for 30 hours then 2.0 L/min from IW

Sampling and Analysis

- Extracted water and 2 MWs
- TCE and tracer analyses and microbial enumerations


Case History #1 (continued)

Results

- TCE reductions of 98% (425 ppb to less than 10ppb) over the first 50 hours
- TCE concentrations increased to background levels after 40 days
- Approximately 50% of injected cells were recovered in extracted groundwater
- Culture did not survive presumably due to the lack of primary substrate, not predation

Conclusions

- Demonstrated initial level of activity
- Both culture activity and survivability need to be extended to be a viable approach
- Addition of substrate (methane) is required

Case History #2: Industrial Site, NJ Envirogen

Culture

- Burkholderia cepacia ENV435 (adhesion deficient variant of B. cepacia PR1₃₀₁)
- Laboratory grown on sucrose and phenol, transferred to holding tanks on site

TCE plume

1.0 to 2.5 mg/L, TCE, DCE isomers, vinyl chloride

Aquifer characteristics

- Heterogeneous, silt and fine to medium-grade sands, thin clay lenses
- K_h 1.13 2.70, ?_e 0.16, groundwater velocity 0.89 m/d

Test Setup

- Control plot and test plot, 4.6 m x 12 m, 3 nested IWs, 3 rows of nested MWs, 1 recover well, single MW at end of plot, 1 nested MW between plots
- Two injection modes, extraction and recirculation (550 L at 2.3 3.0 L/min to achieve 1 x 10¹¹ cells/mL), direct injection into MWs followed by pneumatic flush with pure O₂;
 BSM solution added to control plot
- No additional substrate added

Sampling and Analysis

- Extracted water from MWs
- Chlorinated solvents, O₂, and bromide tracer analysis
- microbial enumerations via plate counting

Case History #2 (continued)

Results

- 1st Injection
 - VOC concentrations reduced by as much as 77% (~2,220 µg/L to <500 µg/L)</p>
 - Culture distributed across the 12 m plot along preferential flow paths
 - Loss of cells due to filtration and/or death (half life 1 to 2 days)
- 2nd Injection
 - VOC concentrations were reduced to as low as 50 μg/L

Conclusion – Limited Success

- Limited distribution of culture, suggests biobarrier potential
- Limited retention/survival of culture
- Multiple injections and oxygen constraints are not attractive for full-scale application
- Addition of substrate is required to retain activity (note: attempts with *B. cepacia* with substrate have resulted in excessive clogging)

Case History #3: Kelly AFB, Texas RTDF and ESTCP

Culture

- KB-1 (mixed culture containing phylogenic relatives of Dehalococcoides ethenogenes)
- Grown in two 8-L stainless steel pressure vessels on methanol and TCE and purged with 80:20 N2:CO2

TCE plume

1.0 mg/L PCE, lesser amounts of TCE and cis-DCE

Aquifer characteristics

- Unconsolidated alluvial deposits consisting of gravels, sand, silt and clay
- Groundwater velocity 0.9 m/d

Test Setup

- Sealed bottle microcosm study and pilot-scale field test
- Control plot and test plot, 10 m, I IW, 5 MWs, 3 EWs
- Inoculation with 13 L KB-1
- Recirculation rate of 5.7 L/min.
- 3.6 mM each of methanol and acetate

Sampling and Analysis

- Extracted water from MWs
- Chlorinated solvents, methanol, VFAs, bromide tracer
- microbial analysis via PCR and 16S rDNA

Case History #3: Kelly AFB, Texas

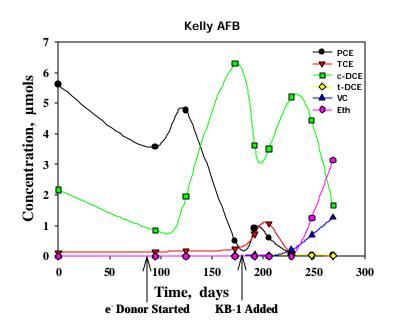
Results

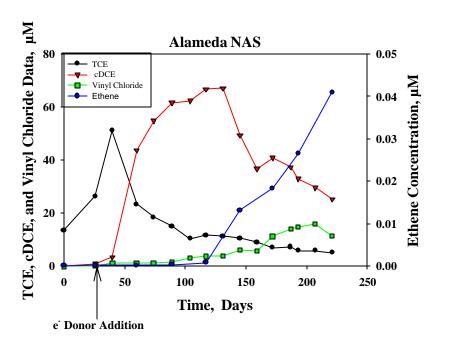
- Microcosm Study
 - Controls TCE to cis-DCE in ~ 20 days
 - Augmented complete conversion of TCE to ethene by day 150
- Field Test
- Extended Test
 - Dehalococcoides persisted for over one year without electron donor addition
 - Reductive dechlorination was held up at cisDCE
 - Electron donor addition lead to recovery of complete dechlorination to ethene

Conclusions

- Demonstrated distribution of culture
- Demonstrated long-term survival
- Demonstrated retention of activity
- Technology selected for full-scale application

Current State-of-the-Art

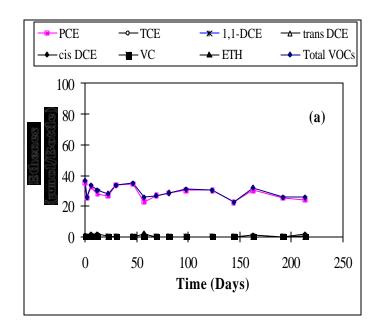

- Screen Sites for Need, Ability to Inject/distribute Amendment, and potential for success
- Select appropriate amendment approach
 - Aerobic, cometabolic, anaerobic
- Select proven culture
 - Survivability and retention of activity
- Use sound engineering principles to design the treatment
 - Biobarrier, funnel & gate, etc...
 - Based on contaminant distribution and aquifer properties
- Bioaugment using proven inoculation procedures
 - Direct injection, pneumatic injection
- O&M similar to enhanced bioremediation

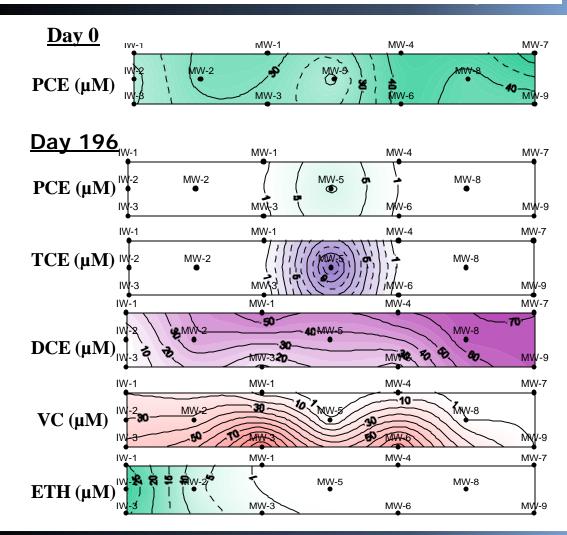


?The **Big** Question?

Is Bioaugmentation Really Necessary?

(Suthersan, S.S., 2001. Natural and Enhanced Remediation Systems. Boca Raton: Lewis Publishers)





Use of Microcosms as the Predictor?

RABITT at Camp Lejeune

Cost Estimate: Biobarri	ier, 200 ft x 1,000 x 10 ft plume, 25 ft depth to water (EST	ΓCP Cost&Performance)
Cost Category	Subcategory	Costs (\$)
	FIXED COSTS	
1. CAPITAL COSTS	Work Plan	\$65,000
	Microcosm Testing	\$84,500
	Site work, (Well Installation, Trenching)	\$71,500
	Equipment (Pumps, Piping, Mixing/Delivery Equipment	\$21,0000
	Microbial Culture	\$25,000
	Installation	\$21,000
		Subtotal \$288,000
	VARIABLE COSTS	
2. OPERATION AND MAINTENANCE	Labor (Operation and Maintenance (Annual))	\$72,000
	Materials and Consumables	\$8,000
	Travel costs	\$20,000
	Chemical/Biological Analyses	\$14,420
	Performance Data Analysis/Reporting	\$11,454
	Trailer Rental	\$9,600
		Subtotal \$135,474
	TOTAL TECHN	OLOGY COST : \$423,474